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Anticuprite, cadmium iodide, perovskite, cesium chloride and many other structures can be con- 
sidered as stacked, partially occupied hexagonal nets. Algorithms are presented for a mathematical  
description of such structures. Whereas previously only quarter-, half-, and three-quarter full nets 
were considered, one-twelfth, one-sixth, one-third, and two-thirds full nets are also described, and 
the results applied to quartz and corundum. Certain formalisms of mathematical  logic are intro- 
duced. Rutile is described as a structure made up of closely packed anion pairs with cations oc- 
cupying the interstices. Plastic modules have been constructed for implementing the mathematical  
descriptions. 

1. Introduct ion 

A description of the location and envi ronment  of 
crystal  elements tha t  is suitable for storage in com- 
puter  and h u m a n  memories and provides a physical ly  
meaningful  system of classification of crystal  struc- 
tures has been the subject  of two previous articles 
(Loeb, 1958; Morris & Loeb, 1960). 

While  those two articles were l imited to structures 
containing closely packed ions and were concerned 
with the par i ty  (modulo-2) value of coordinates, the 
present article extends the same approach to a larger 
group of structures. To this purpose modulo-3 and 
modulo-9 values of the coordinates are also used. 
For these reasons this th i rd  article in the series has 
been provided with a t i t le different from the one 
used in the first two articles. 

The following topics are discussed here: 

(a) An applicat ion of the b inary  algebra to some 
structures containing closely packed ions, not  
covered in the earlier articles. 

(b) An extension of the b inary  algebra to structures 
containing no closely packed ions. 

(c) A modulo-9 algebra for corundum-like structures. 
(d) A combinat ion of the b ina ry  and modulo-9 alge- 

bras for quartz-like structures. 
(e) Algori thms for the ruti le structure, demonstra t ing 

the relat ion of this  s tructure to the close-packed 
one. 

The word 'a lgori thm'  is here used in the sense of 
'generating function' ,  wi th  the special connotation 
'suitable for use in a computer  program'.  

* This work was supported in part by the U.S. Navy 
(Bureau of Ships); and in part by the U.S. Army (Signal 
Corps), and U.S. Air Force (Office of Scientific Research, 
Air Research and Development Command), and the U.S. Navy 
(Office of Naval Research). 

2. Rev iew of the previous  art ic les  

The impor tance  of hexagonal  nets has been pointed 
out by  Wells (1954), Loeb & Goodenough (1957) and 
I ida  (1957). Morris & Loeb (1960) considered a series 
of structures whose anions are either hexagonal ly  or 
cubically close-packed, and whose cations occupy 
either octahedral  or te t rahedral  interstices, or both. 
Hexagona ly  and cubical ly close-packed structures can 
both be considered to consist of stacked hexagonal  
nets;  in hexagonal  structures these nets are per- 
pendicular  to the six-(three-)fold axis, whereas in 
cubic structures they  are perpendicular  to a I l l - ax i s .  
In  order to describe the stacking of the hexagonal  
nets quant i ta t ive ly ,  Morris & Loeb used a hexagonal  
coordinate system in which the h-axis is perpendicular  
to the stacked nets, and in which the v- and w-axis 
make an angle of 120 ° with each other in the plane 
of the nets. The origin is chosen on one of the closely 
packed ions, and in any  h-plane lines of constant  v 
and constant  w connect closely packed ions to their  
nearest  neighbors (see Morris & Loeb, 1960, Fig. 1; 
also see Fig. 1 of the present article). 

The uni t  distance along the v- and w-directions is 
chosen such tha t  adjacent  lines of constant  v and 
constant  w differ by  three units  respectively in v 
and w. The uni t  length along the h-axis is chosen such 
tha t  the shortest distance between adjacent  nets 
containing close-packed anions equals two units  in h. 

The close-packed hexagonal  nets are stacked in 
such a way tha t  in any  h-plane each net  occupies 
one of three possible positions: in the D-position 
the v- and w-coordinates of all ions in the net  equal  
integral  mult iples of three, while in the E- and F-  
positions these coordinates equal  respectively one uni t  
more and one uni t  less t han  a mult iple  of three. The 
well-known facts tha t  closely-packed hexagonal  struc- 
tures are made up of hexagonal  nets stacked in the 
sequence D E D E D E . . . ,  and tha t  cubically close- 
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packed s tructures  contain nets s tacked in the sequence 
D E F D E F . . . ,  are expressed by the following equa- 
tions : 

v=3L +[f(h)]moa3 [ 
(1) 

w = 3M + [f(h)]mod 3 

where L and M are integers, 

and 
f(h) = 2h for cubic s tructures , (2) 

while 

f(h)=4-2]hmoa 4 - 2 [  for hexagonal  structures.  (3) 

with each row representing all sites having the same 
modulo-4 value of h, and each column representing 
all sites having the same par i ty-combinat ion  of v 
and w. The format  of Table 2 is the one we shall 
continue to use in the present  article; it differs from 
tha t  used in the 1960 article in the explicit inclusion 
of the close-packed ions having even values of h. In  
the earlier article, which dealt  exclusively with closely 
packed anions, such explicit exclusion was deemed 
redundant .  Since the present  article also deals with 
s tructures having no close-packed ions a t  all, explicit 
indication of close-packing is no longer superfluous. 

All closely packed anions lie in planes having even 
values of h. All cations t ha t  occupy interstices sur- 
rounded octahedral ly  by anions lie in planes having 
odd values of h, and their  positions within these planes 
are again given by  equations (1), (2) and (3). All 
cations occupying te t rahedra l  sites between closely 
packed anions lie in planes with half-integer values 
of h; once more equations (1), (2) and (3) express 
their  positions within these planes. 

In  rocksalt ,  nickel arsenide, sphalerite, wurtzi te  and 
antifluorite all hexagonal  nets are either completely 
occupied or completely empty.  The distr ibution of ions 
is indicated for all of these s tructures in Table 1, 
where 1 indicates an occupied hexagonal  net, while 
0 indicates an empty  one. 

In  s t ructures  such as spinel only par t  of all the 
available sites in some hexagonal  nets is occupied. 
Morris & Loeb described the distr ibution of cations 
over such sites by  subdividing each net  into four sub- 
arrays,  as shown in Fig. 1 by  the letters a, b, c and d. 
The sites in different subarrays  are distinguished from 
each other by the parities (modulo-2 values) of their  
v- and w-coordinates. One of the subarrays  consists 
of those sites having even v and even w, the second 
of those having even v and odd w, the third of those 
having both v and w odd, while the fourth contains 
all sites having odd v and even w. The distr ibution 
of ions over available sites in spinel is shown in Table 2, 
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Fig. 1. Subdivision of a hexagonal net into four subarrays. 
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Table 1. Distribution patterns for various cubic 
and hexagonal structures 

Cubic-- Rocksalt Sphalerite Anti-fluorite 
Hexagonal-- NiAs Wurtzite 

3/2 0 0 or 1 1 
1 1 0 0 
1/2 0 1 or 0 1 
0 1 1 1 

Table 2. Distribution pattern of spinel 

(Vmod 2, Wmod 2) --~ 

7/2 0 0 0 1 
3 0 0 0 1 
5/2 0 0 0 ] 
2 1 1 1 1 
3/2 0 0 0 0 
1 1 1 1 0 
1/2 0 0 0 0 
0 1 1 1 1 

Table 2 can be slightly rearranged,  as sho~m in 
Table 2(a), when it is remembered  tha t  hmo~ 4 is 
periodic in h with a period of four units. The purpose 
of this rea r rangement  is to point  out the s y m m e t r y  
of the distr ibution pa t t e rn  about  the row h = 1. We say 
t ha t  the distr ibution pa t t e rn  is an even function of 
( h - 1 ) ;  it can be similarly observed tha t  it is an even 
function of ( h - 3 ) .  We shall see in the case of quar tz  
(section 7) t ha t  the lack of such symmet ry  in the 
distr ibution pa t t e rn  is an indication of optical isomer- 
ism. 

Table 2(a). Distribution pattern of spinel (rearranged) 

t 

(Vmod 2, Wmod 2) - +  

3 0 0 0 1 
5]2 0 0 0 i 
2 1 I i 1 
3/2 0 0 0 0 
1 1 1 1 0 
1/2 o o o o 
0 1 1 1 1 
7/2 0 0 0 1 
3 0 0 0 1 

3. S t r u c t u r e s  c o n t a i n i n g  c l o s e l y  p a c k e d  i o n s  

To the s t ructures  discussed in the  previous article 
(Morris & Loeb, 1960) should be added the cadmimn 
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iodide and the anticuprite structures. Cadmium iodide 
has hexagonally close-packed anions; the cations 
occupy half of all octahedral interstices. The distribu- 
tion of cations over octahedral sites is such that  
alternate planes normal to the six-fold axis are 
completely occupied. The distribution pattern for 
cadmium iodide is therefore as given by Table 3; 
the distribution along the h-axis resembles that  of 
octahedrally surrounded cations in spinel (see Table 2). 

Table 3. Distribution pattern of cadmium iodide 
7/2 0 

t 3 o 
512 o 
2 1 
3/2 o 
1 1 

t 1/2 o 
o 1 
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from ordinary chemical usage, and denote oxygen in 
distribution patterns by the symbols Ox. In Table 5 
it is shown that each hexagonal array having even h 
is one-quarter occupied by Ca, three-quarters occupied 
by OK. 

The small cations, Ti, in perovskite are octahedrally 
surrounded, hence occupy planes having odd values 
of h, as shown in Table 5. In these planes they fill one 
quarter of all available sites; to assign the Ti-ions 
the proper parity of v and w we recall from the 
description of spinel (Morris & Loeb, 1960) that the 
distance between ions in adjacent and next-adjacent 
planes is a maximum when the ions in different 

h-planes have the same v- and w-parity. Since max- 
imum Ti-Ca-distance corresponds to minimum poten- 
tial energy and hence greatest stability, the Ca- and 
Ti-ions have the same v- and w-parities, as shown in 
Table 5. 

Table 4. Distribution pattern of anticuprite 

(Vmod 2, Wmo4 2) ---> 

1" 3/2 ~ o o o 
1 0 0 0 0 
1/2 1 0 0 0 
0 1 1 1 1 

Table 5. Distribution pattern of perovskite 

(Vmod 2, Wmod 2) --> 

t 3/2 o o o o 
1 Ti 0 0 0 
]/2 o o o o 
0 Ca Ox Ox Ox  

Anticuprite has cubically close-packed anions, with 
one quarter of all tetrahedral sites occupied by cations. 
The distribution of cations over tetrahedral sites in 
anticuprite resembles that  of cations over tetrahedral 
sites in spinel. The distribution pattern for anticuprite 
is given in Table 4; of course, it applies also to cuprite, 
with cations closely packed, and anions occupying 
one quarter of the tetrahedral interstices. 

These two examples, cadmium iodide and anti- 
cuprite, illustrate the recurrence of the patterns of 
subdivision described in the 1960 article. In the next 
section we shall find that  these patterns occur as well 
in structures containing no closely packed ions. 

4. S t r u c t u r e s  c o n t a i n i n g  no  c l o s e l y  p a c k e d  i o n s  

The binary algebra is now extended to the perovskite 
and cesium chloride structures. Whereas these struc- 
tures do not contain closely packed ions, they can 
nevertheless be derived from stacked hexagonal nets. 

In perovskite (CaTiOs), one type of cations (Ca) is 
sufficiently large to combine with the anions in form- 
ing a close-packed array, while the smaller cations 
(Ti) occupy octahedral interstices between the anions. 
From the chemical formula CaTiOa it follows that  one- 
quarter of the close-packed array is occupied by 
cations; the subdivision of the close-packed array into 
quarters once more follows the pattern of spinel. 
In the case of perovskite we encounter for the first 
time h-planes occupied by two kinds of ions (Ca and 0). 
In order to distinguish in distribution patterns be- 
tween the symbol for an unoccupied site (0, zero) and 
that  for a site occupied by an oxygen, we shall deviate 

A structure closely related to perovskite is ReO 3 
Here the oxygens occupy a three-quarters close- 
packed structure, with Re octahedrally surrounded 
by oxygens. The distribution pattern of ReOa is 
derived from that  of perovskite by removing Ca and 
substituting Re for Ti (see Table 6). The close relation- 
ship between the distribution patterns of Tables 5 
and 6 and the chemical formulas should be noted. 

Table 6. Distribution pattern for ReO3 

(Vmod 2, Wmod 2) --~ 

t' 3/2 0 0 0 0 
1 R e  0 0 0 
1/2 o o o o 
0 0 Ox  Ox  Ox  r¢ 

To this class of structures belongs also the cesium 
chloride structure. In this structure both the anions 
and the cations form separately primitive cubic 
structures. Since four interpenetrating primitive cubic 
structures form the cubically close-packed structure, 
the CsCl-structure is merely a one-quarter filled 
cubically close-packed structure, so that  the distribu- 
tion pattern for the cesium chloride structure is as 
shown in Table 7. There is a certain similarity between 

Table 7. Distribution pattern for the cesium chloride 
structure 

(Vrno~l ~, wmod 2) --> 

t 8/2 0 0 0 0 
1 1 0 0 0 
]/2 o o o o 
0 1 0 0 0 
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Fig. 2. Plastic sheet modules. (a) Plan of top surface. (b) Plan of bottom surface. 

the CsC1 and ReO8 structures: The empty sites sur- 
rounding the Re are just the filled ones surrounding 
the Cs, while the empty sites surrounding the Cs are 
just the filled ones surrounding the Re. 

5. Modules for displaying crystal structures 

Morris & Loeb (1960) have described four modules, 
two tetrahedral and two octahedral, for constructing 
crystal models with the use of distribution patterns. 
These modules are particularly suitable for construc- 
tion models of crystals containing closely packed ions. 
While these modules could be adapted for wider 
applicability, the resulting modules would be far 
clumsier for use with close-packed arrays than were 
the original ones. Because of the importance of struc- 
tures having closely packed ions, it has been decided 
to leave the original modules unchanged, and a 
different set of modules has been built to construct 
models of any crystal that  can be derived from 
hexagonal nets. Some of the mathematics underlying 
these modules has been discussed by Morris & Loeb 
(1960, section 2 and Tables 2(a) and 2(b)). These 
modules consist of plastic sheets, with hemispherical 
cavities on both sides. These cavities form an hex- 
agonal array on each side of the sheet; the relative 
positions of the two arrays are just those of D- and 
E-arrays, or of E- and F-arrays. In other words, if 
the v- and w-coordinates of the centers of the cavities 
all equal an integral multiple of three on one side of 
a plastic module, then they equal one more or one less 
than an integer multiple of three on the other side. 
(See Fig. 2). According to equations (1), (2) and (3) 
proper stacking of such modules with proper distribu- 
tion of colored spheres over the cavities can produce 
a large variety of cubic and hexagonal structures. 
The thickness of the sheets has, of course, been chosen 
such that  properly close-packed structures with cor- 
rect tetrahedral and octahedral interstices are ob- 
tained. I t  should be emphasized that  the colored 

spheres represent centers of ions; these are not packing 
models. 

Fig. 3. Model of ReO3, constructed with plastic sheet modules. 

Fig. 3 shows the RcO3 structure, as constructed 
from these modules. The perovskite structure is built 
just as easily, but on a black and white photograph 
it would be difficult to distinguish the three types of 
ions. I t  should be noted that  each Re-ion is at the 
center of an octahedron having oxygens at the 
corners. 

6. Corundum 

Corundum, one of the Al~03 structures, has hexag- 
onally close-packed anions, with 2/3 of the octahedral 
interstices occupied by cations. I t  is easy to sub- 
divide the hexagonal net into three subarrays (Iida, 
1957); it is interesting to note that  whereas cubically 
symmetrical structures are easily subdivided into four 
equivalent subarrays while preserving cubic sym- 
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merry, it appears impossible to subdivide cubically 
symmetrical structures into three equivalent sub- 
arrays without loss of symmetry. 

The cations in corundum occupy planes having odd 
values of h. When h is odd, hmod a in equation (3) is 
either 1 or 3, hence ]hmod4--21 equals unity, and 
f(h)=2. Thus all cations occupy sites having v=  
3L + 2, w = 3M + 2, hence occupy F-arrays. Two thirds 
of each hexagonal net having odd values of h are 
occupied in corundum, with the empty sites staggered 
so that  they never lie directly above each other. We 
shall first describe an idealized corundum structure, 
and then show how the actual structure is easily 
inferred from the distribution pattern of the idealized 
structure. 

The idealized structure requires for its distribution 
pattern subdivision of the hexagonal net into three 
subarrays, as shown in Fig. 4. This subdivision is 
coded mathematically in terms of a function of the 
v- and w-coordinates of the individual sites. Whereas 
subdivision of the hexagonal net into four subarrays 

/ \  
/° \ / \  

/ \/°\/\,/",, 
/°\ / \  / \ / \  

/ \  / \  / \  / \  

/°\/\/°\ 

Fig. 4. Subdivision of a hexagonal  ne t  into three  subarrays .  

was done on the basis of the parities of v and w, the 
subdivision into three subarrays is described by the 
modulo-9 value of the difference between v and w. 
From equation (1) it follows that  the function (v -w)  
always equals an integral multiple of 3, i.e. 0, 3, 6, 9, 12, 
etc. Therefore (V--W)mod 9 equals 0, 3 or 6; inspection 
of Fig. 4 shows that  the sites labeled p, q and r are dis- 
tinguished from each other by the value of (v-W)moa 9 
for each site. I t  should be noted that, as was the case 
with the a, b, c and d arrays, the labels p, q and r 
can be permuted at will between the three possible 
values of (v-W)mod 9 by a suitable choice of the origin; 
the important fact is that  all sites bearing the same 
label have the same value of (v-W)mod 9. 

Table 8 contains the distribution pattern of the 
idealized corundum structure; the planes having even 
values of h contain the hexagonally close-packed 
anions, while each of the planes having odd values 
of h is two-thirds occupied by cations. With increasing 

value of h it is alternately the p, the q and the r arrays. 
that  are empty; therefore the distribution pattern has 
a period of six units in h. 

Table 8. Distribution pattern of corundum 

( v -  W)mod 9 --> 

f 
u~  

11/2 0 0 0 
5 1,1, o 11' 
9/2 0 0 0 

4 1 1 1 
7/2 0 0 0 
3 0 11' 14, 
5/2 0 0 0 
2 1 1 1 
3/2 0 0 0 
1 11, 14, o 
1/2 0 0 0 
0 1 1 1 

When it is recalled that  all hexagonal nets having 
odd values of h are stacked in the F position, the 
distortion from the idealized corundum structure 
follows directly from the distribution pattern. I t  is 
observed that, in a direction parallel to the h-axis, 
cations occur in pairs, with empty sites between the 
pairs. A stabilizing distortion therefore occurs in the 
h-direction, with each cation being displaced away 
from its companion, in the direction of an empty site. 
The real corundum structure therefore contains 

.... ~ / % . , \ ~  

Fig. 5. Model of corundum,  
cons t ruc ted  wi th  oe tahedra l  modules.  

puckered hexagonal cation nets instead of plane ones. 
For convenience arrows are drawn in Table 8 from 
each cation in the direction of an empty site; these 
arrows are, of course, not really a part of the distribu- 
tion pattern. In Fig. 5 we show the idealized corundum 
structure as constructed out of octahedral modules. 

7.  Q u a r t z  

The somewhat idealized structure of high-temperature 
quartz as given by Wyckoff (1948) can be derived 

A C 1 5 -  15 
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from stacked hexagonal  nets. R. Newnham and the 
author have constructed this quartz structure out of 
the modules described in section 4. 

The silicons and the oxygens are stacked a l ternate ly  
in planes perpendicular  to the six-fold axis;  the 
distance between adjacent  oxygen-planes is taken as 
two units  in h. The hexagonal  nets used in the descrip- 
t ion of quartz are stacked neither cubically nor hex- 
agonally, but  vert ical ly above each other, just  like, 
for instance, the F-ar rays  containing the cations in 
corundum. 

The oxygens occupy 1/6 of their  hexagonal  nets, 
the silicons 1/12 of their  nets;  each silicon is sur- 
rounded by four oxygens at corners of a t etrahedron. 
As is observed from Wyckoff 's  diagram, this tetra- 
hedron is not a regular one, but  one distorted in such 
a way tha t  opposite edges perpendicular  to the h-axis 
make an angle more nearly 120 ° than  90 ° with each 
other. In  fact, the four oxygens surrounding a silicon 
more nearly occupy four of the six corners of a regular 
octahedron around the silicon. 

For a mathemat ica l  description of quartz the 
hexagonal  net  must  be divided into twelve equivalent  
subarrays.  To this purpose the division into four 
(a, b, c, d) and the division into three (p, q, r) sub- 
arrays are combined. By superposition of Figs. 1 and 4, 
Fig. 6 results;  the twelve combinat ions of a, b, c and d 
with p, q and r produce twelve equivalent  subarrays,  
each denoted by a combinat ion of two letters. In  order 
to avoid dis t r ibut ion pat terns  with twelve columns, 
we use the following notat ion common in mathe-  
mat ica l  logic. 

o p  

\ 

\ 
bq cr 

\ 

o r ~  d p  - -  oq 
, \\ / /  \~ 
\ / \ / \ 

bl~ - -  cq - -  br - -  cp 

. \/\/\, \ 
Qq - -  dr -- ap -- dq - -  ar 

,,,\/\/\/\,.\ 
br  - -  c p  - -  bq  - - -  cr - -  b p  - - c q  

/\/\/\/\/\ /\ 
ap -- dq - -  or-- dp -- oq dr-- op 

,,\/,.\/\/\/,\/,,,, \ 
bq  - -  cr  - -  bp  - -  cq  - -  b r  - -  cp  . . . .  bq - - -  - c r  

or--dp--aq .... dr .... up---- dq ar --dp aq 

, \\ ' "  X \ ,  . '  " \ 
, \  \ / ' \ . ,  .,.\ .. 

bp -- cq-- br cp --- bq - Cr - bp - - cq - -'br cp 
. . . .  , ,, , , / \  \ \ \  

aq ---- dr-- op-- dq ---- ar --- dp -- aq -- dr -up -dq' ---ar 

Fig.  6. S u b d i v i s i o n  of a h e x a g o n a l  n e t  i n to  12 s u b a r r a y s .  

If a symbol  a denotes all sites belonging to the 
subarray  a (Fig. 1), and the symbol p denotes all sites 
belonging to subarray  p (Fig. 4), then the symbol ap 
is interpreted as the 'logical product '  of a and p, 
namely  all sites belonging to both subarray a and 
subarray  p. In  addition, the notat ion (p (~ q) indicates 
'all sites belonging to either the p or the q array. '  
Accordingly, a(p Q q) means 'all sites belonging to 
the a-array and to either the p- or the q-array. '  

Since the ar ray  a occupies one quarter  of a hexagonal  
net  and the array p one th i rd  of such a net, ap occupies 
one twelfth, a(p ~ q) one sixth of the net. In  Table 9 
we show the dis t r ibut ion pa t te rn  of quartz in terms 
of this notation. In  the left-most column we denote 
]imoa 6, in analogy with the preceeding dis t r ibut ion 
patterns,  and the middle column represents in the 
short hand of mathemat ica l  logic the twelve columns 
of the b inary  dis t r ibut ion pattern.  This dis t r ibut ion 
pat tern  does not have the property tha t  we observed 
for spinel and tha t  is common to all dis t r ibut ion 
pat terns  considered so far, namely  invar iance to 
reversal in direction of the h-axis. For convenience 
the row h = 0  is shown explici t ly at both the bot tom 
and the top of Table 9, and the right hand  column 
of tha t  table shows the effect of reversing the direc- 
t:ion of the h-axis. I t  is observed tha t  this reversal 
produces a new pat tern  tha t  cannot be turned into 

Table 9. Distribution pattern of quartz 
O* d(q ~ r) O* 
5 bp ] 
4 a(q ~ r) 2 
3 dp 3 
2 b(q Q r) 4 

"~ 1 ap 5 
O* d(q ~ r) O* 

* T h e  row h = 0 has  b e e n  r e p e a t e d  for  t he  r e a son  e x p l a i n e d  
in t he  t e x t .  

/ \ ~'--~,/ \, '--< / \  I \  )--< / X  
Dr-- cp -  oq- cr - -  bp b r - - c p - b q - c r - - b p  

I ' . . - < \ 1 \  / \ / ; . - . .  . -~ ' \  / \ / \  / k  / \ .  
op-(dq)-clr-- d p -  aq-(dr ) (op)-dq- ar-- dp - (3q - or 

L/ ~ ~ / ~ / ~[1 ~ Y ,  L ~  / ~ , / ~ / ~L / ~ /' ~ oq- cr-- op-cq--  D F- Cp--Dq oq- cr--  Dp- cq-  Dr-- cp -  oq 
\ . l  \ l ,~t~ \ l ~f~.~ \ l \ I \  I \  I ~ \ IX  I 
op- oq-ak~)-o p-ak~ " - o~ dp-  oq -d r -  ~(~-dq-G~ 

x /  x ,  . / \ ,  . /  \ J \ / \ j  , / \ ~ . . '  
b r - c p -  bq- c r -  up o r -  cp -  o q - c r -  up 

\ . - 4 \  / \ /  \ /  \ / \  / \ . / \  / 
d ~ - a r -  d p - a q  d q - o r - - a p - a q  

h=O h = l O R  5 

/aq-dr- up- d.q a q - d r -  op-dq 

/ \ /  \_/ \ . /  \ / P  / \ . / \  /~"~\/\or-cp-bq-cr-bp 

a p - a q - g r - - u p -  gq--dr up-  aq-  ar- d(,.~-aq-dr 
,(.z.,\ / \  / \ / :<-~.\ / \¢.-.., / \ / \  / \ /  , . /  \ / \  
(Dq)-cr-- Dp- Cq-(br)- cp-(oq} b.q- c r -  b p - c q -  Dr- cp-  oq 
"--.~,./ \ / \ . /  \ /".~,./ \ / ~ "  ~.:, \ / ~./ \ . ' \ . 1  \ I 

up- aq--ar-- ap--aq- ar (ap)- aq- or- uP- aq-ar 
~-<,\ / ~.<-/x\ / \ . /  " - ~ /  \ / \ . /  \ .' \~ I  
b ( , ~ C p - ( ~ - c r - - D  p br-  cp - Dq-cr-- op 

. . /  \ /  , . / \ /  \ . /  \ / ,k 'K  \ / 
a q - a r - - a p -  aq aq-  a r - ( ~ -  aq 

h - - 2 0 R 4  h = 5  

(•)-d,r-- ap-dq aq-dr-- ap-dq 

L~ \ 1 \ 1 \ / \  I \ l \ l \ / \ f ~  
Dr-- a p - - b q - c r -  bp b r -  c p - b q - c r - ( b p ~  

/ \ / ~ - ( \  / ~,--<\ / \ / \ / \  / \ ,'-J, 
op-  dq- (or) -  dp-(oq)- dr o p - d q -  or-- d p-  aq - d r  

. ,/ \ / \. ) ' ~  / X 2"K, / \. J \ 1 " , ~  \ 1 '  / \ / \  
bq-c r - -  pp- c q -  Dr- cp - Dq oq-  cr -  ( D p ) - c q - b r -  cp -b  c 

\ / Y - ~ , \  / \ / \ . / ? - - ~  \ / \ / " - -~ ,  / \ / \  / \ /  
dp-(aq ) - d r - a p -  aq- jar ) dp- aq-  d r -  ap-dq - a r  

\ ,'---< / \ / \  / '~ ~"-" \ / \ / \ / \ / '.---K 
br-- ap- oq-c r - -op  br -  c p - b q -  ¢r- (bp)  \ / >"< \ / ~,'C~ \ . /  \ / \ . / \  ' J  
dq- a(~-dp-~ aq-ar--dp-oq 

h = 4 OR 2 h = 5 OR I 

Fig.  7. H e x a g o n a l - n e t  o c c u p a n c y  for  q u a r t z .  
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the original one, because the reversal of the axis 
reverses the order in which the symbols d, a and b 
occur in the center column. 

The original and the new model are therefore each 
other 's  mirror  images;  they  represent the two optical 
isomers of quartz. One of these isomers is characterized 
by  the sequence dab in the center column of Table 9, 
the other by  the sequence dba. 

As an example  of the construction of a model with 
the aid of the models described in section 4, Fig. 7 
contains the layout  of the hexagonal  nets tha t  are to 
be stacked according to the instructions of Table 9; 
one isomer results when the values of h are taken from 
the left hand  column while the other isomer results 
when the r ight  hand  column is consulted. 

I t  should be observed tha t  no subarray  containing 
the let ter  c is occupied (see Table 9). Yet  the c-arrays 
p lay  an impor tan t  role in the quartz structures, for 
the cq and cr subarrays  in each hexagonal  net represent 
the locations at which those axes intersect the h-planes, 
around which the silicons and oxygens together form 
the well-known spirals. Inspection of Fig. 7 will con- 
f i rm the fact tha t  in the two isomers the spirals wind 
in opposite directions. 

8. The  rut i le  s t ruc ture  

With  the ruti le structure we reach a structure tha t  
does not appear  to be buil t  of stacked hexagonal  nets. 

z 
• Cat ions 

0 An ions  

x 

(a) 

Z • Cat ions 

l 0 An ions  

• " . . . . . . . . . .  "i' . . . . . . . . . .  c '  . . . . . . . . . .  (;  . . . . . .  

I 
(b) 

Fig. 8. A r r a n g e m e n t  of ions in the  rut i le  s t rue tu re  ; 
cross sect ions are paral lel  to  XZ-p lane .  

Yet we shall  show tha t  this  structure is very  s imply 
related to the close-packed one. 

In  ruti le the anions are surrounded by  only three 
cations instead of four, as is the case for instance, 
in sphalerite and wurtzite. These three cations are 
eoplanar with the anion. The cations are oetahedral ly 
surrounded by  anions;  the octahedron is not regular, 
but  distorted so tha t  two an ion-ca t ion-an ion  s traight  
lines make angles of 60 ° with each other. The th i rd  
an ion-ca t ion-an ion  straight  line is perpendicular  to 
the first two. All ca t ion-anion bonds are equal ly  long. 
These are the constraints upon which our idealized 
model for ruti le is bui l t ;  this model is drawn in Fig. 8. 
In  this figure a Cartesian coordinate system is used 
for reference. 

The X-axis is chosen in such a way that it bisects 
the angle of 60 ° made by some of the anion-cation 
bonds. The Y- and Z-axes bisect the 120 ° angle be- 
tween such bonds. The origin is chosen half way 
between two neighboring anions. The unit distance is 
chosen such that the shortest anion-cation distance 
equals two units; this is also the shortest anion-anion 
distance. Fig. 8 shows sections made normal to the 
Y-axis along alternate planes containing cations. 
Half of the anions lie in these same planes, but the 
other half lies out of the planes with the bonds con- 
necting them to their nearest cations making angles 
of 30 ° with these planes. All bonds and anions lying 
outside the planes containing the cations are shown 
dotted. The two planes shown Fig. 8 are identical, 
except for a translation in the Z-direction; sections 
made normal to the Z-axis are again identical with 
these two. Inspection of Fig. 8 shows that the con- 
straints of trigonal environment of the anions and the 
special octahedral environment of the cations pos- 
tulated above are indeed satisfied. The distance 
between adjacent cation-planes is three units. 

Inspection of Fig. 8 shows another important rela- 
tionship, namely that rutile might be considered 
constructed out of equilateral Ti02 triangles, half of 
them oriented normal to the Z-axis, the other half 
normal to the Y-axis. When we consider the cations 
in rutile, then we observe that these form a close- 
packed array that is tetragonally compressed along 
the X-axis. The centers of mass of the O2-pairs also 
form a tetragonally distorted close-packed array con- 
gruent with that formed by the cations. Accordingly, 
we find that the anions form a close-packed array of 
anion pairs, half  of these pairs being oriented parallel  
to the Y-axis is due to the parallel  to the Z-axis. 
The compression along the X-axis is due to the fact 
tha t  the anion pairs are not spherical in shape, but  
elongated. 

In  view of this  in terpre ta t ion we might  re-interpret  
the cation environment .  Along the X-axis  one finds 
one anion pair  in the positive and one anion pair  in 
the negative X-sense; both of these pairs are normal  
to the X-axis.  Along the other two axes there are 
four more anion pairs, two parallel,  the other two 
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normal to the respective axes. Altogether, therefore, 
each cation is surrounded by six anion pairs, one along 
each coordinate direction and sense. 

Our interpretation of the rutile structure is easily 
put in mathematical form. Since each cation-anion 
bond is two units long, the height of each TiO2 triangle 
is ~/3 units. The coordinates of the cations therefore 
obey equation (6). 

~ / 3 x + y + z = 6 K + 3  , (6) 

where K is an integer. 

The centers of mass of the anion pairs have coor- 
dinates tha t  obey equation (7). 

~/3x + y + z = 6 K  . (7) 

Since each anion is just one unit away from such 
a center of mass, the coordinates of the anions them- 
selves obey equation (8). 

]"3x+y+z=6K + 1. (8) 

Equation (8) does not give information regarding 
the orientation of each oxygen pair. This information 
is given as follows" 

x = L ~ 3  , (9) 

y=3M+_ (L+ 1)rood ~., (10) 

where L and M are integers. 

From equation (9) we learn tha t  the x-coordinates 
of all anions are integral multiples of 13. From 
equation (10) it follows that  if x is an odd multiple 
of V3, then y is a multiple of 3, so that  the anion is 
eoplanar with the cations. On the other hand, if x 
is an even multiple of ~3, then y is not a multiple of 3, 
so tha t  the anion is not coplanar with the cations 
(dotted in Fig. 8). 

By combining equations (8), (9) and (10), we find" 

z= 6K +_ 1 - 3 L - 3 M T  (L + 1)moa o 

= 3(2K - L - M) T- Lmod 2 • 

If we define N = 2 K - L - M ,  this becomes" 

z = 3N -T- Lmoa 2 • (11 ) 

Equation (11) is, of course dependent on equations 
(8), (9) and (10), and therefore yields no new informa- 
tion. In summary, the following equations are most 
convenient in describing the locations o~ all ions in 
the rutile structure. 

x=L~/3 (9) 
y=3M+(L+l )moa2  (10) 

z = 3 N  ¥ Lmo~ 2 (11) 
L + M + N = 2 K  (12) 

l ' 3 x + y + z = 6 K + 3  (6) 

(anion locations) 

(cation locations) 

Equations (6), (9), (10), (11) and (12) represent the 
algorithms for the rutile structure. 

9. Conc lus ions  

The binary algebra developed initially (Loeb, 1958; 
Morris & Loeb, 1960) for structures containing closely 
packed ions has been shown to have wider applica- 
bility, and new modules have been developed for 
building crystal models with the use of the mathe- 
matical expressions presented here. The power of this 
modular algebra for representing complex three- 
dimensional structures and concepts is demonstrated 
particularly in the case of high-temperature quartz, 
whose optical activity is not easily predicted from 
two-dimensional projections of the structure, but  
follows directly from the distribution pattern. Final ly 
the various unit-cell representations of rutile have 
been reconciled by means of algorithms showing this 
structure to consist of closely packed oxygen pairs 
with t i tanium in the octahedral interstices. 

The author is indebted to Prof. Robert  E. Newnham 
of the Electrical Engineering Department  at M.I.T. 
for his collaboration in constructing the quartz model, 
and to Dr E. W. Gorter of the Philips Laboratories 
at Eindhoven for calling to his attention the inde- 
pendent parallel work by Iida. Special thanks are due 
the two referees whose comments on the first draft 
of this article were very helpful in improving the 
presentation of the material. 
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